

新通教育网为大家整理了GMAT数学解题技巧:独立重复性试验总结,供考生们参考,以下是详细内容。
独立重复性试验的特点是:很难搞清顺序。
先写规律:第一步:先求出特殊概率。第二步:找到特殊情况和一般情况之间的因子。以下的题目全部选自jj
例一、投一枚硬币2n次,求出现正面k次的概率?
第一步:特殊概率,前k次出现正面的情况(1/2)^k(1/2)^(2n-k)
第二步:特殊情况和一般情况之间的因子。C(k,2n)
所以答案为C(k,2n)*(1/2)^k(1/2)^(2n-k)
例二、有4组人,每组一男一女,每组中各取一人问取出两难两女的概率?
第一步:前两组取男,后两组取女(1/2)^4
第二步:差的因子C(2,4)
所以答案为C(2,4)*(1/2)^4
例三、一个人投飞彪,击中靶心的概率为0.7,连续投4次飞彪,问有两次击中靶心的概率?
第一步:特殊情况:前两次击中,后两次没击中:(0.7)^2(0.3)^2
第二步:差的因子:C(2,4)
所以答案为C(2,4)*(0.7)^2(0.3)^2
例四、某种硬币每抛一次正面朝上的概率为0.6问连续抛5次,至少有4次朝上的概率?
有5次朝上(0.6)^5
有四次朝上C(4,5)*0.6^4*0.4
所以答案为(0.6)^5+C(4,5)*0.6^4*0.4
以上就是GMAT数学解题技巧:独立重复性试验总结的详细内容,希望能对大家有所帮助。最后,预祝各位都取得一个好成绩!